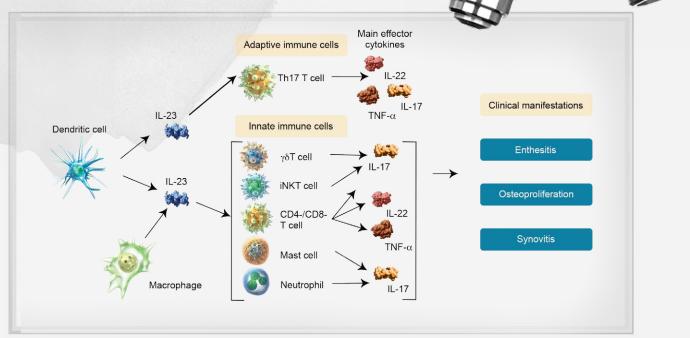

Ankylosing Spondylitis (AS) vs Rheumatoid Arthritis (RA): The differences go deep

From cytokine signaling to clinical signs in AS and RA, research reveals key distinctions that are changing the way we see these conditions.^{1,2}


AS vs RA: A deeply different pathogenesis

Recent investigations have revealed distinctions in the T cell subtypes associated with the pathogenesis of AS and RA:

- B cells linked with rheumatoid factor (RF): The presence of serum RF and spontaneous RF-secreting B cells is a common feature in most patients with RA^{3,4}
- T cells linked with HLA-B27: In contrast, most patients with AS are RF-negative. Many AS patients in particular are positive for HLA-B27, which is thought to facilitate the role of T cells in the pathogenesis of all spondyloarthritis, including AS^{5,6}
- IL-17A-expressing T cell levels are higher in AS: IL-17A-expressing T cell levels are elevated in the blood and facet joints of patients with AS⁶⁻⁹

Multiple cell types and cytokines are implicated in AS¹⁰

The pathophysiology of AS is complex and involves the interplay between multiple cell types and cytokines, including dendritic cells, T cells, TNF- α , IL-17, and IL-22.¹⁰

HLA=human leukocyte antigen; IL=interleukin; iNKT=invariant natural killer T; Th=T helper cells; TNF=tumor necrosis factor. Adapted with permission from Smith JA, Colbert RA. *Arthritis Rheumatol.* 2014;66(2):231-241.

Learn more about AS vs RA at RealityofSpA.com

A deeply different burden

Similar prevalence rates have been reported for both AS and RA¹¹

AS is largely undiagnosed; delays of up to 9 years have been reported

Age of onset is earlier in patients with AS than RA¹¹

- AS: Mean age of onset is at 20 to 30 years
- RA: Younger onset is at 42 years, older onset is at 68 years

Radiographic changes may not be seen for up to 10 years after the onset of clinical symptoms in AS^{11}

Main structural outcome in AS is abnormal new bone formation vs bone erosion in RA^{2,12}

AS targets different sites than RA^{2,12-15}

	RA	AS
Symmetrical	×	
Entheseal		×
New bone formation (syndesmophytes)		×
Peripheral joints		
Metacarpophalangeal joints	×	
Proximal interphalangeal joints	×	
Lower limb joints		×
Axial joints		
Spine		×
Sacroiliac joints		×

AS is different from RA

Investigators are taking a closer look at the distinctive pathogenic mechanisms of AS, including the roles of T cells and cytokines such as IL-17A and IL-22.^{6,10}

Further elucidation of these AS disease mechanisms may point to an independent direction in the science behind AS.

See the differences at RealityofSpA.com

References: 1. Khan MA. Ankylosing spondylitis and related spondyloarthropathies: the dramatic advances in the past decade. *Rheumatology*. 2011;50(4):637-639. 2. Lories RJ, Baeten DL. Differences in pathophysiology between rheumatoid arthritis and ankylosing spondylitis. *Clin Exp Rheumatolo*. 2009;27(suppl 55):S10-S14. 3. Hoffmann M, Lundberg K, Steiner G. Autoantibodies in rheumatoid arthritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt KE, Weisman MH, eds. *Rheumatology*. 2011;50(4):637-639. 2. Lories RJ, Baeten DL. Differences in pathophysiology of spondyloarthritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt KE, Weisman NH, eds. *Rheumatology*. 6th ed. Philadelphia, PA: Elsevier; 2015:61-84. 3. Numthe LA, Kontinen YT, et al. B-cells and their targeting in rheumatoid arthritis—current concepts and future perspectives. *Autoimmun Rev.* 2011;11(1):28-34. 5. Rudwaleit M. Classification and epidemiology of spondyloarthritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman NH, eds. *Rheumatology*. 6th ed. Philadelphia, PA: Elsevier; 2015:102-113. 7. Appel H, Kuhne M, Spiekermann S, et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. *Arthritis Rheum.* 2009;65(4):674-1656. 9. Appel H, Maier R, Wu P et al. Analysis of IL-17⁺ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. *Arthritis Res Ther.* 2011;13(3):R95. 10. Smith JA, Colbert RA. Review: the interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and bygoud. *Apthritis Rheumatol.* 2009;67(2):231-241. 11. Cross MJ, Smith E, Ozodali A, Star S, Shen H, Lores IC, Ash ZR, Finzel S, Conaghan PG.
Structural damage in rheumatoid arthritis, soriatic arthritis, and ankylosing spondylitis: raditional views, novel insights gained from TNF blockade, and concepts for the future. *Arthritis Res Ther.* 2011;13(suppl 1):S4. 13. Aletha D, Neogi T, Siman AJ,

U NOVARTIS

Novartis Pharmaceuticals Corporation East Hanover, New Jersey 07936-1080

XAT-1343506